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Aujourd’hui

Chiffrement asymétrique



Rappel : chiffrement symétrique




Chiffrement asymétrique

Un cryptosysteme pourrait utiliser a priori des clés différentes pour le chiffrement et le
déchiffrement :

m E c D m
ke kd

(ce qui inclut les cryptosystemes symétriques dans le cas particulier ke = ky)

si la connaissance de |'une des clés ne fournit pas d'information utile a propos de |'autre

alors I'une d’elle peut étre rendue publique



Chiffrement a clé publique

La clé de chiffrement k. est rendue publique (kg gardée privée)

n'importe qui peut écrire a Bob, mais seulement lui peut lire

Implémenté par exemple dans PGP /GPG


http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://en.wikipedia.org/wiki/GNU_Privacy_Guard

Problemes asymétriques célebres

factorisation de grands entiers

— RSA (1977)

probleme du logarithme discret (DLP)
— Diffie-Hellman (1976), ElGamal (1984), DSA (1993)

logarithme discret sur les courbes elliptiques

— ECC (2000+): ECDH, ECDSA, Ed25519, ...

probléme du plus court vecteur / résolution de systemes d'équations bruitées

—> cryptographie basée sur les réseaux



Chiffrement hybride

Probléeme : toutes ces constructions sont beaucoup moins performantes que les
algorithmes de chiffrement symétriques.

Par exemple : RSA nécessite des clés de 3072 bits pour 128 bits de sécurité
(15360 bits pour passer a 256 bits de sécurité . ..)

On préfere donc la plupart du temps utiliser un chiffrement hybride



Chiffrement hybride

Si Alice souhaite envoyer un (grand) message m a Bob en utilisant sa clé publique k :

e Alice choisit une clé de chiffrement symétrique k
e envoie a Bob ¢ = Essym(ke, k) | Esym(k, m)
e Bob récupere k avec sa clé privée ky

e puis déchiffre le reste du message avec k pour récupérer m
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Probleme du logarithme discret



Cadre général

On travaille dans un groupe abélien (G, ¥) i.e.

un ensemble G d'éléments muni d'une opération interne 4 pour laquelle
e ab=b*apourtouta,be G
e (akb)¥c=at(b¥c) pourtout a,b,c € G
o il existe un neutre O¢g € G pour lequel a*0g = 0g¥a = a pourtout ae G

e chaque élément a € G admet un opposé a pour lequel aka = ada = 0¢.



Exemples de groupes abéliens

(Z,+), (Q,+), (R,+), (C,+), ...

(Q*7 ')' (R*7 ')' (C*a ')v

(Z/nZ,+) pour n > 1 entier : groupe cyclique

((Z/pZ)*, -) avec p premier : groupe multiplicatif a p — 1 éléments

courbes elliptiques



Opération itérée
Etant donné g € G et un entier n € N, on peut itérer n — 1 fois |'opération :

n8g =gkgtk - -*g.
—_——

n
En convenant que 0% g = 0g et (—n) ¥ g = nR g, cette opération d'itération satisfait
les propriétés habituelles :

e (m+n)Rg=(mRg)¥(nRg)pourtout mneZ geG

e nR(g*h)=(nRg)¥(nBh) pourtout n€ %, g,he G

e (m-n)Rg=mRB(nRg) pourtout mnecZ, geciG

NB : lorsque 4 est une multiplication, ce ne sont que les lois des exposants !



Ordre d’un élément

Definition

On appelle ordre d'un élément g € G le plus petit entier n > 0 pour lequel
n®g =_0¢

qu'on note ordg(g). S'il n'en existe pas, on convient que ordg(g) = +c.

On peut montrer qu'en général

n®g=0; <= ordg(g) divise n.



Probleme du logarithme discret

Definition (logarithme discret)
dlogg(x,g8) =0 < x=(%g

La terminologie vient du cadre multiplicatif, méme si les groupes d'intéréts aujourd'hui
sont additifs.

Remarque : si¢ = ( alors (%8 g = {8 g (et vice-versa)
ordg(g)

donc le logarithme discret n'est bien défini que modulo ordg(g).



Exemple dans 7Z/2039Z avec +

Prenons g = 2.

o ord(2) = 2039

e dlog(15,2) = 1027

(facile)



Exemple dans (Z/2039Z)* avec -

Toujours avec g = 2.

e ord(2) = 1019

e dlog(15,2) = 655

(moins facile — on peut cacher de l'information dans les exposants !)



Example: x = 2°
2039

2000
1500

1000
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Applications du DLP : Diffie-Hellman, ElGamal



Partage de secret

Le chiffrement a clé publique fournit une solution au probléme de partage de clé privée
pour pouvoir utiliser du chiffrement symétrique sur un canal non sécurisé :

Alice choisit une clé secrete k,

la chiffre avec la clé publique de chiffrement de Bob,

et lui envoie;

Bob récupere k en utilisant sa clé privée de déchiffrement.

Y a-t-il des problemes avec ce systeme ? (indice: oui)



Version symétrique

e Alice choisit kx et I'envoie a Bob en utilisant sa clé de chiffrement publique;
e Bob choisit kg I'envoie a Alice en utilisant sa clé de chiffrement publique;
e |a secret partagé final est k := kp @ kg.

Mieux puisque ni Alice, ni Bob ne contrdle le secret final.

Mais deux clés publiques de chiffrement sont nécessaires. . .



Diffie-Hellman (1976)

e Alice et Bob s'entendent sur un groupe (G, ¥) et g € G pour lequel le probleme
du logarithme discret est considéré difficile.

o Alice choisit m, calcule a= m¥% g et |I'envoie a Bob.

e Bob choisit n, calcule b= n%® g I'envoie a Alice.

Le secret partagé est
ki=(m-nN)Bg=mBb=nRa.



Le probleme de Diffie-Hellman

L'attaquante Eve doit résoudre le probleme :
connaissant a et b, retrouver k.

On croit que la meilleure attaque consiste a :

e calculer m = dlog(a, g) ou n = dlog¢(b, g)

e puis calculer aisément k = (m - n) 8 g comme le feraient Alice ou Bob.



Précautions

e DH doit toujours étre utilisé avec de I'authentification pour éviter les attaques
personne-dans-le-milieu (PitM)

e Bob doit vérifier qu'Alice ne fournit pas une valeur de a pour laquelle le
logarithme discret est facile a calculer (et de méme du c6té d'Alice).

22



Chiffrement ElGamal (1984)

Essentiellement Diffie-Hellman 4+ masque a usage unique
Parametres publics: G et g € G pour lequel le DLP est difficile
Clés:

e d clé privée de déchiffrement

o ¢ := d¥®8 g clé publique de chiffrement

Alice souhaite envoyer un message m € G a Bob.



Chiffrement

Alice choisit un entier aléatoire m, calcule s .= a®% g

Calcule le secret partagé k = a® e

Calcule le chiffré ¢ = m+ k

Transmet la paire (s, ¢)



Déchiffrement

A la réception d’une paire (s, c), Bob

e Calcule le secret partagé k = d % s

e Récupere m=c¥k

(Les mémes précautions que pour D-H s'appliquent)
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Cryptanalyse



Attaquer le DLP

ou : comment calculer des logarithmes discrets

dlogg(x,8) =0 <= x=1(%8g

Algorithme naif: recherche de ¢ par force brute
On trouvera en O(ordg(g)) < O(|G]) étapes

= on veut que |'ordre de g grand (et donc en particulier le nombre d'éléments de G)



Théoréeme des restes chinois

Si I'ordre de g est composé, on peut réduire la complexité du calcul du logarithme
discret.

En effet, si ordg(g) = m - n avec m et n premiers entre eux, on peut montrer que
I'équation
(R8g=x
est équivalente au systeme d'équations
(R (MmRg)=(mRx)
(R (nKg)=(nKx)

qui permet de récupérer £ mod n et £ mod m, donc £ mod m - n.

On demande donc que ordg(g) soit premier.



Exemple

Calculer dlog(9,2) dans (Z/13Z)*.



Baby-step giant-step

Compromis temp/mémoire pour calculer ¢ i : dlog¢(x, g)-
ord(g

Choisissons une base [ et écrivons £ = i + j.

Petits pas:

Calculer et stocker les valeurs de j % g pour j € [0, 5[ dans une table
Grands pas:

tant que x n'est pas dans cette table, lui soustraire 3% g.



Baby-step giant-step

En d'autres termes: les petits logarithmes (< ) sont lus dans la table pré-calculée.

Dans le cas général pour x, on cherche une version modifiée x ¥ (—if3) 8 g pour lequel

le logarithme est petit.

xk(—if)8g=j8g <— x=(if+j)8g < dlogg(x,g)=iB+].

Complexité temporelle: O(S) + (9(°fdﬁ(g))

Complexité spatiale: O(3)

On prend souvent 3 ~ y/ord(g) pour obtenir un complexité globale O(y/ord(g)).



Exemple : calculer dlog,y;,(15,2)

ord(g) = 1019

\ord(g) ~ 32

donc on peut prendre 5 =~ 32 et trouver la réponse en au plus 32 grands pas

Réponse : ¢ = 655 (facile a vérifier !)



Autres algorithmes

Il'y a un algorithme probabiliste pour le DLP qui prend (en moyenne) O(y/ord(g))
étapes (et O(1) mémoire)

Par contre : on dispose de bien meilleurs algorithmes pour résoudre le DLP modulaire
—> méme longueurs de clés que pour RSA

records actuels


http://en.wikipedia.org/wiki/Pollard's_rho_algorithm_for_logarithms
https://en.wikipedia.org/wiki/Discrete_logarithm_records

Calcul du DLP

ecurity level

140 4
1201
100 A
general number field sieve
80 1
60

40 1

204

key length

T T T T T T T T
500 1000 1500 2000 2500 3000 3500 4000



Courbes elliptiques

O

&

Les meilleurs algorithmes connus sont les algorithmes génériques

— sécurité a n bits atteinte avec des clés de seulement 2n bits ©
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